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Estimation of the fourth-order dispersion coefficient β4
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The fourth-order dispersion coefficient of fibers are estimated by the iterations around the third-order
dispersion and the high-order nonlinear items in the nonlinear Schordinger equation solved by Green’s
function approach. Our theoretical evaluation demonstrates that the fourth-order dispersion coefficient
slightly varies with distance. The fibers also record β4 values of about 0.002, 0.003, and 0.00032 ps4/km for
SMF, NZDSF and DCF, respectively. In the zero-dispersion regime, the high-order nonlinear effect (higher
than self-steepening) has a strong impact on the transmitted short pulse. This red-shifts accelerates the
symmetrical split of the pulse, although this effect is degraded rapidly with the increase of β2. Thus, the
contributions to β4 of SMF, NZDSF, and DCF can be neglected.
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The determination of the fourth-order dispersion
coefficient is important to various applications, such as
super-continuum generation[1], generation and transmis-
sion of new regime solitons[2], and broadband parametric
amplification[1], among others.

In ultra-high speed optical communications (femtosec-
ond pulses), there is a need to clarify the general nature
of pulse broadening induced by dispersion orders higher
than three[3], because even the residual fourth-order dis-
persion (e.g., small dispersion) causes significant broad-
ening in extremely short pulses[4]. The analytical expres-
sions that describe pulse shape (i.e., Gaussian pulse and
interference) at the receiver in the presence of nth order
dispersion have been reported in Ref. [5].

Chromatic dispersion (CD) is determined by taking ad-
vantage of the interplay between dispersion and nonlin-
ear effects, such as measuring the parametric four-wave
mixing (FWM) conversion efficiency[6] or the modula-
tion instability (MI) sidebands[7]. Both methods funda-
mentally rely on phase-matching condition that, in turn,
depends on the dispersion coefficients and pump power;
thus, the pump power should be high (>1 W) to achieve
parametric amplification[8]. A method has been pro-
posed to measure β4 using a low-power tunable laser and
low-power amplified spontaneous emission (ASE) noise

source, which directly provides the ratio of β3/β
[9]
4 . Scal-

ing the MI emitted by soliton fission in the normal dis-
persion regime facilitates the retrieval of the fourth-order
dispersion coefficient[10]. The FWM method for short,
highly nonlinear fibers has been introduced and validated
experimentally[11]. This method measures ultra-low val-
ues of the fourth-order dispersion coefficient.

This letter presents a theoretical estimation of the
fourth-order dispersion coefficient, which is based on the
iteration method related to high-order dispersion and
nonlinear items as well as the Green function solution
of nonlinear Schordinger equation (NLSE). The values of
β4 slightly vary with the distance in some experiment re-
sults, but this estimation does not require pulse power
and fiber parameters. The high-order nonlinear effect
that is higher than self-steepening does not generate dis-

tinct impact on the transmitted pulse in the conventional
fibers (SMF, DCF, and NZDSF). However, the impact on
zero-dispersion regime or high nonlinear fibers cannot be
ignored.

The NLSE that governs the wave transmission in fibers
is given by

∂u

∂z
+

i

2
β2

∂2u

∂t2
−

1

6
β3

∂3u

∂t3
− iγ exp(−2αz)

·
[
|u|

2
u + is

∂ |u|
2

∂t
u + is |u|

2 ∂u

∂t

]
= 0, (1)

where β2 and β3 are the CDs, γ is the nonlinear
coefficient, s is the self-steepening parameter, and α is
the fiber loss. The solution in the frequency domain is
given by

u(z + dz, ω) = exp(dzD̂) exp(dzN̂)u(z, ω), (2)

where D̂ = i
2ω2β2 − i

6ω3β3 and N̂ = Γ{iγ exp(−2αz)
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Fourier transform.

If L̂ = ∂
∂z

− D̂ − N̂ and L̂G(z, z′, ω) = δ(z − z′), we
obtain the Green function as

G(z, z′, ω) =
1
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In constructing the iteration given by

β3 = β0
3 + δβ3, u(z, ω) = u0(z, ω) + δu(z, ω),

then,

δu(z, ω) =

∫
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and u0(z′, ω, β0
3) is determined by Eq. (2). The min-

imum value of δu(z, ω) satisfies ∂δu(z, ω)/∂ω = 0,
R[∂2δu(z, ω)/∂ω2] > 0; therefore,
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Next, we obtained the high-order nonlinear effect into
account by constructing another iteration related to δγ
given by

γ = γ0 + δγ, u(z, ω) = u0(z, ω) + δu(z, ω).

This process was repeated through which we obtain

δγ ≈ exp
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Afterwards, we simulated the pulse shape

affected by the high-order dispersion and nonlin-
ear effects. Assuming LD = t20/ |β2| and u(0, t) =∫ +∞

−∞
u(0, ω) exp(−iωt)dω = u0 exp(−t2/t20/2). First, we

determined the equations induced by δβ3 and δγ. To ex-
trude their impact, we chose other parameters for small
values in Figs. 1 and 2. The deviation between the red
and the black lines in Fig. 1(a) indicates the impacts of
δβ3 and δγ, that is, they induced the symmetrical split of
the pulse. This split does not belong to the SPM-induced
broadening oscillation spectral or β3-induced oscillation
in the tailing edge of the pulse, because γ is very small
in Eq. (1) and β3 = 0[12]. The self-steepening effect

attributed to is∂(|u|
2
u)/∂t is also shown explicitly in

the black line of Fig. 1(a). The symmetry of the split
pulse is improved when we reduced the s value to 0.0001
in Fig. 1(b).

Is the pulse split in Fig. 1(a) caused by δβ3 or δγ. The
red lines in Fig. 2 describing the pulse evolutions affected
by very small second-order dispersion and nonlinear (in-
cluding self-steepening) coefficients, clearly demonstrate
that δβ3 induces the symmetrical split of the pulse.
Moreover, the maximum peaks of split pulse alter vary
from the spectral central to the edge and to the center.
Therefore, this effect is equal to that of the fourth-order

dispersion β
[3,8,12]
4 .

The impact of δγ can also be detected based on the
deviation between the red and black lines in Fig. 2. This
deviation accelerates pulse split when the self-steepening
effect is ignored (s = 0 in Fig. 2(a)), which is similar
to the self-phase modulation broadening spectral and
oscillation. The high nonlinear γ accelerating pulse split
has been validated[11,13]. If s 6= 0 (Fig. 2(b)), δγ simul-
taneously leads to split pulse redshift.

Generally, we did not take δγ into account. Thus, we
clarified the case where it created impact. The red lines
in the comparison between (c) with (b) in Fig. 2 do not
show significant change, indicating that δβ3 is slightly
related to γ. However, the increase of γ (Fig. 2(c)) also
increased the split pulse redshift. This means that δγ is

Fig. 1. (Color online) Pulse shapes with (black) and without
(red) δβ3 and δγ. ν = ω/2/π, β0

3 = 0 ps3/km, γ = 1.3× 10−2

km−1 · W−1, t0 = 80 fs, z = 3.7 × t20/ |β2|, β2 = −21.7/150
ps2/km, u0 = |β2| /γ/t20. s = (a) 0.01 and (b)=0.0001.

Fig. 2. (Color online) Pulse evolutions. Red line: without
δγ; black line: with δβ3 and δγ. (a) s = 0, γ = 1.3 × 10−4

km−1 · W−1; (b) s = 0.01, γ = 1.3 × 10−4 km−1 · W−1; (c)
s = 0.01, γ = 1.3 km−1 ·W−1. Other parameters are the same
as those shown in Fig. 1.

Fig. 3. Pulse shapes with and without δγ. β2 = −21.7
ps2/km, s = 0.01, γ = 1.3 km−1 · W−1. Other parameters
are the same as those shown in Fig. 2.

related to γ, and a high nonlinear coefficient strength-
ens the impact of δγ. In addition, the pulse does not
split until z = 9LD and the black line (with δγ) is com-
pletely overlapped with the red line (without δγ) (Fig.
3). This results in the higher second-order dispersion β2

causing an impact on covered δγ that, in turn, weakens
the impact of δβ3. Therefore, δγ should be taken into ac-
count when simulating pulse shape in the zero-dispersion
regime or the high nonlinear coefficient fibers.

Therefore, we utilized δβ3 to determine the fourth-
order dispersion coefficient β4. Fiber parameters are
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listed in Table 1. The process is shown in Fig. 4 and
the dispersion operator that includes β4 is given by

D̂ =
i

2
ω2β2 −

i

6
ω3β3 +

i

24
ω4β4.

We plotted the fourth-order dispersion coefficients of
SMF, NZDSF, and DCF (Fig. 5). The β4 averages are
listed in Table 2. These average values are different from
those determined by the FWM or MI effect, where β4

relies on power and broadening frequency[11,13]. Here,
the colored dotted lines are slightly separated; thus, our
method shows that the fourth-order dispersion is also
a function of distance, and every type of fiber has its
special average β4, revealing the characteristic of fibers.
These values are similar to the experiment results in high
nonlinear fibers[11,13]. Although we consider the high-

order nonlinear effect δγ, the items isδγ∂(|u|
2
u)/∂t and

iδγ exp(−2αz) |u|
2
u have small contributions to β4 at

only 10−26 ps4/km quantity order for the typical SMF.
Here, the impact of δγ is hidden by the relatively strong
β2. However, our calculation of β4 remains bigger than
the experiment results[11,13]. This result is attributed to
the dependency of β4 on frequency. Furthermore, the

self-steepening effect is∂(|u|
2
u)/∂t apparently affects

the pulse. If this effect is ignored, β4 becomes as low as
the experimental results[11,13].

In conclusion, the fourth-order dispersion coefficient

Fig. 4. β4 calculations.

Fig. 5. (Color online) β4 in SMF, NZDSF and DCF, respec-
tively. Black line: z = 1.5LD; red line: z = 5LD; blue line:
z = 50LD. Parameters are listed in Table 1.

Table 1. Fiber Parameters

DCF NZDSF SMF

a (dB/km) 0.59 0.21 0.21

γ (km−1 · W−1) 5.5 2.2 1.3

s 0.01 0.01 0.01

β2 (ps2/km) 110 −5.6 −21.7

β3 (ps3/km) −0.5 0.115 0.1381

Central Wavelength (nm) 1 550 1 550 1 550

Table 2. β4 Average Values. Units: ps4/km

Z = 1.5LD Z = 5LD Z = 50LD

DCF 0.0003 0.00035 0.00032

NZDSF 0.0022 0.003 0.0032

SMF 0.0012 0.002 0.0025

is estimated by theory simulations based on Green’s func-
tion approach and the iteration method, including the
high-order nonlinear effect (higher than self-steepening).
The high-order nonlinear effect induces strong pulse
split and redshift in the zero-dispersion regime. How-
ever, this impact is rapidly degraded by β2 increase.
Therefore, the impact of conventional fibers on β4 can
be neglected (only 10−26 ps4/km quantity order for the
typical SMF). Our simulation values are consistent with
some reported experiment results, wherein β4 varies with
distance. However, we delete the high-order nonlinear
effect from β4. The β4 values for SMF, NZDSF, and DCF
are about 0.002, 0.003, and 0.00032 ps4/km, respectively.
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